The dTDP-4-dehydro-6-deoxyglucose reductase encoding fcd gene is part of the surface layer glycoprotein glycosylation gene cluster of Geobacillus tepidamans GS5-97
نویسندگان
چکیده
The glycan chain of the S-layer protein of Geobacillus tepidamans GS5-97 consists of disaccharide repeating units composed of L-rhamnose and D-fucose, the latter being a rare constituent of prokaryotic glycoconjugates. Although biosynthesis of nucleotide-activated L-rhamnose is well established, D-fucose biosynthesis is less investigated. The conversion of a-D-glucose-1-phosphate into thymidine diphosphate (dTDP)-4-dehydro-6-deoxyglucose by the sequential action of RmlA (glucose-1-phosphate thymidylyltransferase) and RmlB (dTDP-glucose-4,6dehydratase) is shared between the dTDP-D-fucose and the dTDP-L-rhamnose biosynthesis pathway. This key intermediate is processed by the dTDP-4-dehydro6-deoxyglucose reductase Fcd to form dTDP-a-D-fucose. We identified the fcd gene in G. tepidamans GS5-97 by chromosome walking and performed functional characterization of the recombinant 308-amino acid enzyme. The in vitro activity of the enzymatic cascade (RmlB and Fcd) was monitored by high-performance liquid chromatography and the reaction product was confirmed by H and C nuclear magnetic resonance spectroscopy. This is the first characterization of the dTDP-a-D-fucopyranose biosynthesis pathway in a Gram-positive organism. fcd was identified as 1 of 20 open reading frames contained in a 17471-bp S-layer glycosylation (slg) gene cluster on the chromosome of G. tepidamans GS5-97. The sgtA structural gene is located immediately upstream of the slg gene cluster with an intergenic region of 247 nucleotides. By comparison of the SgtA amino acid sequence with the known glycosylation pattern of the S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a, two out of the proposed three glycosylation sites on SgtA could be identified by electrospray ionization quadrupole-time-offlight mass spectrometry to be at positions Ser-792 and Thr-583.
منابع مشابه
The dTDP-4-dehydro-6-deoxyglucose reductase encoding fcd gene is part of the surface layer glycoprotein glycosylation gene cluster of Geobacillus tepidamans GS5-97T.
The glycan chain of the S-layer protein of Geobacillus tepidamans GS5-97(T) consists of disaccharide repeating units composed of L-rhamnose and D-fucose, the latter being a rare constituent of prokaryotic glycoconjugates. Although biosynthesis of nucleotide-activated L-rhamnose is well established, D-fucose biosynthesis is less investigated. The conversion of alpha-D-glucose-1-phosphate into th...
متن کاملEmended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus.
Nineteen thermophilic, aerobic, endospore-forming bacterial strains were subjected to 16S rRNA gene sequence analysis. Eight of these strains had been received as cultures of Geobacillus kaustophilus, G. lituanicus, G. stearothermophilus, 'G. thermoleovorans subsp. stromboliensis', G. vulcani, 'Bacillus caldolyticus', 'B. caldotenax' and 'B. caldovelox', but they showed close relationships with...
متن کاملHaloferax volcanii N-Glycosylation: Delineating the Pathway of dTDP-rhamnose Biosynthesis
In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. ...
متن کاملEnhancement of Polymerase Activity of the Large Fragment in DNA Polymerase I from Geobacillus stearothermophilus by Site-Directed Mutagenesis at the Active Site
The large fragment of DNA polymerase I from Geobacillus stearothermophilus GIM1.543 (Bst DNA polymerase) with 5'-3' DNA polymerase activity while in absence of 5'-3' exonuclease activity possesses high thermal stability and polymerase activity. Bst DNA polymerase was employed in isothermal multiple self-matching initiated amplification (IMSA) which amplified the interest sequence with high sele...
متن کاملProduction of a novel quercetin glycoside through metabolic engineering of Escherichia coli.
Most flavonoids exist as sugar conjugates. Naturally occurring flavonoid sugar conjugates include glucose, galactose, glucuronide, rhamnose, xylose, and arabinose. These flavonoid glycosides have diverse physiological activities, depending on the type of sugar attached. To synthesize an unnatural flavonoid glycoside, Actinobacillus actinomycetemcomitans gene tll (encoding dTDP-6-deoxy-L-lyxo-4-...
متن کامل